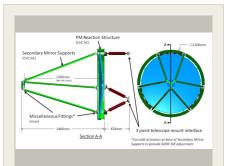
Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I


Completed Technology Project (2015 - 2015)

Project Introduction

Trex proposes to demonstrate a novel ceramic joining technology (solid state bonding) for CVC SiC® that allows "seamless" joining of smaller, easily manufactured, and simply shaped components to produce large mirrors and telescope structures, a type of Additive Manufacturing. Trex CVC SiC® is a directly super-polishable mirror substrate material that does not require a silicon cladding, and it has tremendous thermal diffusivity for passive dimensional stability. Such an Additive Manufacturing process minimizes schedule intensive machining processes, labor hours, polishing time, and metrology, which in turn dramatically decreases the cost of the mirror. Our Phase I objective is to optimize the solid state bonding process (make it 100% pore free) and to fabricate a subscale monolithic mirror substrate from hexagonal panels which have been solid state bonded together. Phase I will demonstrate traceability to multi-meter class mirror substrates. Trex CVC SiC® represents an extraordinary technology investment opportunity for NASA with respect to near-term balloon-borne stratospheric telescopes for Astrophysics and Planetary science, and farther term EUOVIR telescopes such as ATLAST observatory.

Primary U.S. Work Locations and Key Partners

Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I

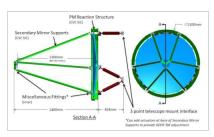
Completed Technology Project (2015 - 2015)

Organizations Performing Work	Role	Туре	Location
Trex Enterprises	Lead	Industry	San Diego,
Corporation	Organization		California
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	California

Project Transitions

June 2015: Project Start


December 2015: Closed out

Closeout Summary: Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirr ors and Structures, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138937)

Images

Briefing Chart Image

Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I (https://techport.nasa.gov/imag e/127584)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Trex Enterprises Corporation

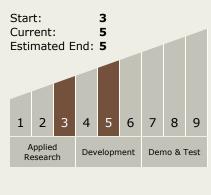
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Lauren Bolton

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

 TX08 Sensors and Instruments
TX08.2 Observatories
TX08.2.1 Mirror Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

